Lexical this

Pro Members Only

This lesson is available if you have an active subscription.

Alternatively, some member might be able to gift it to you.

If you already have a subscription, you can sign in.

Professional TypeScript Masterclass Lessons

1.Introduction
free
⏱️ 1:54
2.Setup
free
⏱️ 5:44
3.Primitive Types
free
⏱️ 1:42
4.Instance Types
free
⏱️ 1:52
5.Arrays And Tuples
free
⏱️ 1:38
6.Objects
free
⏱️ 1:33
7.const declarations
free
⏱️ 1:03
8.Function Types
free
⏱️ 1:57
9.Structural Typing
free
⏱️ 2:10
10.Classes in TypeScript
free
⏱️ 1:48
11.Target Compiler Option
free
⏱️ 2:37
12.Generics
⏱️ 3:02
13.Special Types any And unknown
⏱️ 2:00
14.JavaScript to TypeScript
⏱️ 1:32
15.Frontend Projects
⏱️ 3:49
16.Type Assertions
⏱️ 2:15
17.Type Casting
⏱️ 1:16
18.Modules
⏱️ 1:55
19.Type Declarations
⏱️ 4:25
20.Creating NPM packages
⏱️ 3:20
21.Async Await
⏱️ 3:05
22.Running in NodeJS
⏱️ 1:40
23.Lexical this
⏱️ 2:34
24.readonly Modifier
⏱️ 1:59
25.Union Types
⏱️ 2:57
26.Literal Types
⏱️ 2:58
27.Type Narrowing
⏱️ 4:19
28.Discriminated Unions
⏱️ 3:29
29.Class Parameter Properties
⏱️ 1:02
30.Strict Compiler Option
⏱️ 6:18
31.null vs undefined
⏱️ 4:19
32.Intersection Types
⏱️ 2:03
33.Optional Modifier
⏱️ 2:47
34.Non Null Assertion Operator
⏱️ 3:40
35.Interfaces
⏱️ 2:28
36.Interface Declaration Merging
⏱️ 1:01
37.Types vs Interfaces
⏱️ 2:16
38.never Type
⏱️ 3:00
39.implements Keyword
⏱️ 1:25
40.Definite Assignment Assertion
⏱️ 2:31
41.User Defined Type Guards
⏱️ 2:02
42.Assertion Functions
⏱️ 3:42
43.Function Overloading
⏱️ 4:15
44.Call Signatures
⏱️ 2:53
45.Abstract Classes
⏱️ 1:53
46.Index Signatures
⏱️ 3:08
47.Readonly Arrays and Tuples
⏱️ 2:58
48.Double Assertions
⏱️ 2:20
49.const Assertions
⏱️ 3:55
50.this Parameter
⏱️ 2:33
51.Generic Constraints
⏱️ 2:43
52.typeof Type Operator
⏱️ 2:12
53.Lookup Types
⏱️ 3:12
54.keyof Type Operator
⏱️ 3:55
55.Conditional Types
⏱️ 4:39
56.Contitional Types with Unions and never
⏱️ 3:32
57.infer Keyword and `ReturnType<T>`
⏱️ 3:47
58.Mapped Types
⏱️ 2:48
59.Mapped Type Modifiers
⏱️ 3:37
60.Template Literal Type
⏱️ 4:28
61.Partial<T>
⏱️ 1:27
62.Required<T>
⏱️ 1:36
63.Readonly<T>
⏱️ 1:34
64.Record<K, T>
⏱️ 4:05
65.Project References
⏱️ 4:18
66.undefined vs. optional
⏱️ 2:48
67.satisfies Operator
⏱️ 2:42
68.PropertyKey Type
⏱️ 0:57
69.ThisType<T>
⏱️ 4:11
70.Awaited<T>
⏱️ 4:12
71.String Manipulation Types
⏱️ 3:36
72.Mapped Types as Clauses
⏱️ 4:01
73.Union vs Intersection Mental Model
⏱️ 3:36
74.Enums are Bad
⏱️ 8:11

Lexical this

Subscription Required

You must have an active subscription to access this content.
If you already have a subscription, you can sign in.

Safe Access for this

Unsafe Example:

class Person {
private _age: number;
constructor(_age: number) {
this._age = _age;
}
growOld() {
this._age++;
}
currentAge() {
return this._age;
}
}

// This will Error
const person = new Person(0);
const growOld = person.growOld;
growOld();

Safe access using arrow functions:

class Person {
private _age: number;
constructor(_age: number) {
this._age = _age;
}
growOld = () => {
this._age++;
}
currentAge() {
return this._age;
}
}

// This will work!
const person = new Person(0);
const growOld = person.growOld;
growOld();
javascript
typescript
react
playwright

Enjoy free content straight from your inbox 💌

No spam, unsubscribe at any time.

Transcript

00:00

Here we have a simple JavaScript class called person that takes an initial value for the age property and then provides two methods. One, grow old, which increments the age property, and then a method called age, which returns the current age of the person. And we create an instance of the person with an initial age of zero call the grow old method to increment the age to one and then log out the age. And of course, if you run this code, we expect to log out the age of one. There are two ways to think about this

00:32

keyword in JavaScript. One way is the calling context. The other way is scoped other than arrow and bound functions. This is driven by the calling context. Since the grow old method is not an arrow function, this will be driven by the calling context. So when we are invoking grow old on the person object, this will be person. Now, as we have discussed before, functions in JavaScript are first class, and what this means is that they can be stored in a variable. So we can store the grow old method into a variable

01:05

and then invoke it directly. Now in this case, since the method is not being invoked on any object, the calling context and therefore the key key word, this will be undefined within the function body. And if you run this code, you can see that error shows up on the console. Now you might be tempted to think that you would never store a method in a variable and never end up with this code In real world, however, this method to variable assignment can occur quite easily. For example, if you give this method to set time out to invoke later, this will be lost.

01:38

As far as the invocation within set, time out is concerned. It'll be the same as just calling the grow old method by itself. Fortunately, JavaScript also offers a ally scoped this. And the way to use that is with an error function. So instead of creating a simple method, we create grow old as a property pointing to an error function. Error functions in JavaScript. Capture this from the surrounding context. Since all property initializes execute at the end of the constructor, this will be bound to whatever instance is present within the constructor.

02:12

And now since it is no longer driven by the calling context, we don't need to worry about it being invoked incorrectly and both our usages both as a variable and within the set, timeout will work as expected. So if you log out the age after two seconds, you can see that the answer is correct with the value of two.

Professional TypeScript Masterclass

Professional TypeScript Masterclass

1.Introduction
free
⏱️ 1:54
2.Setup
free
⏱️ 5:44
3.Primitive Types
free
⏱️ 1:42
4.Instance Types
free
⏱️ 1:52
5.Arrays And Tuples
free
⏱️ 1:38
6.Objects
free
⏱️ 1:33
7.const declarations
free
⏱️ 1:03
8.Function Types
free
⏱️ 1:57
9.Structural Typing
free
⏱️ 2:10
10.Classes in TypeScript
free
⏱️ 1:48
11.Target Compiler Option
free
⏱️ 2:37
12.Generics
⏱️ 3:02
13.Special Types any And unknown
⏱️ 2:00
14.JavaScript to TypeScript
⏱️ 1:32
15.Frontend Projects
⏱️ 3:49
16.Type Assertions
⏱️ 2:15
17.Type Casting
⏱️ 1:16
18.Modules
⏱️ 1:55
19.Type Declarations
⏱️ 4:25
20.Creating NPM packages
⏱️ 3:20
21.Async Await
⏱️ 3:05
22.Running in NodeJS
⏱️ 1:40
23.Lexical this
⏱️ 2:34
24.readonly Modifier
⏱️ 1:59
25.Union Types
⏱️ 2:57
26.Literal Types
⏱️ 2:58
27.Type Narrowing
⏱️ 4:19
28.Discriminated Unions
⏱️ 3:29
29.Class Parameter Properties
⏱️ 1:02
30.Strict Compiler Option
⏱️ 6:18
31.null vs undefined
⏱️ 4:19
32.Intersection Types
⏱️ 2:03
33.Optional Modifier
⏱️ 2:47
34.Non Null Assertion Operator
⏱️ 3:40
35.Interfaces
⏱️ 2:28
36.Interface Declaration Merging
⏱️ 1:01
37.Types vs Interfaces
⏱️ 2:16
38.never Type
⏱️ 3:00
39.implements Keyword
⏱️ 1:25
40.Definite Assignment Assertion
⏱️ 2:31
41.User Defined Type Guards
⏱️ 2:02
42.Assertion Functions
⏱️ 3:42
43.Function Overloading
⏱️ 4:15
44.Call Signatures
⏱️ 2:53
45.Abstract Classes
⏱️ 1:53
46.Index Signatures
⏱️ 3:08
47.Readonly Arrays and Tuples
⏱️ 2:58
48.Double Assertions
⏱️ 2:20
49.const Assertions
⏱️ 3:55
50.this Parameter
⏱️ 2:33
51.Generic Constraints
⏱️ 2:43
52.typeof Type Operator
⏱️ 2:12
53.Lookup Types
⏱️ 3:12
54.keyof Type Operator
⏱️ 3:55
55.Conditional Types
⏱️ 4:39
56.Contitional Types with Unions and never
⏱️ 3:32
57.infer Keyword and `ReturnType<T>`
⏱️ 3:47
58.Mapped Types
⏱️ 2:48
59.Mapped Type Modifiers
⏱️ 3:37
60.Template Literal Type
⏱️ 4:28
61.Partial<T>
⏱️ 1:27
62.Required<T>
⏱️ 1:36
63.Readonly<T>
⏱️ 1:34
64.Record<K, T>
⏱️ 4:05
65.Project References
⏱️ 4:18
66.undefined vs. optional
⏱️ 2:48
67.satisfies Operator
⏱️ 2:42
68.PropertyKey Type
⏱️ 0:57
69.ThisType<T>
⏱️ 4:11
70.Awaited<T>
⏱️ 4:12
71.String Manipulation Types
⏱️ 3:36
72.Mapped Types as Clauses
⏱️ 4:01
73.Union vs Intersection Mental Model
⏱️ 3:36
74.Enums are Bad
⏱️ 8:11